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Abstract

Damping contributions from the viscoelastic matrix, interphase and the dissipation resulting from
damage sites are considered to evaluate composite material damping coefficients in various loading modes.
The paper presents the results of the FEM/Strain energy investigations carried out to predict anisotropic-
damping matrix comprising of loss factors Z11, Z22, Z12 and Z23 considering the dissipation of energy due to
fiber and matrix (two phase) and correlate the same with various micromechanical theories. Damping in
three phase (i.e., fiber–interphase–matrix) composite is also calculated as an attempt to understand the
effect of interphase. The contribution of energy dissipation due to sliding at the fiber–matrix interface is
incorporated to evaluate its effect on Z11, Z22, Z12 and Z23 in fiber-reinforced composite having damage in
the form of hairline debonding. Comparative studies of the various micromechanical theories/models with
FEM/Strain energy method for the prediction of damping coefficients have shown consistency when both
the effect of variable nature of stress and the fiber interaction is considered. Parametric damping studies for
three phase composite have shown that the change in properties of fiber, matrix and interphase leads to a
change in the magnitude of effectiveness of interphase, but the manner in which the interphase would affect
the various loss factors depends predominately upon whether the hard or soft interphase is chosen. Analysis
of the effect of damage on composite damping indicates that it is sensitive to its orientation and type of
loading.
r 2003 Published by Elsevier Science Ltd.

1. Introduction

Damping is an important parameter related to dynamic behavior of fiber-reinforced composite
structures. The successful characterization of dynamic response of viscoelastically damped
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composite materials to prescribed modes of loading and time histories depends upon use of an
appropriate analytical model/method, describing properties of composites based upon its
constituents and their interaction, condition of interphase, presence of defects and selection of
computational techniques. Composites are anisotropic and non-uniform bodies and a description
of damping process in these materials calls for essential new development in the theory of
damping. Zioniev and Ermakov [1] have classified the studies on composites as experimental
investigations to generate damping data, the value and meaning of damping characteristics, their
relation with material internal structure and development of damping theories/models in order to
fully describe the energy dissipation process in composite materials. The mechanisms to which the
dissipation energy can be attributed are: the viscoelastic nature of the matrix and/or fiber
materials, damping due to interphase [2], damping due to damage [3], and viscoelastic damping at
large amplitudes of vibration or high stress/strain levels and thermoelastic damping [4].
The effect of various damping mechanisms has been taken care of either individually or in

combination, while modelling damping in fiber-reinforced composites. Chang and Bert [5], Crema
and Castellani [6], Saravanos and Chamis [7,8], Kaliske and Rother [9], Chandra et al. [10,11]
have predicted damping coefficients of fiber-reinforced composites considering the dissipation of
energy due to fiber and matrix only whereby referring to it as a two-phase composite.
The contribution of three phases i.e., fiber–interphase–matrix in composites towards damping

evaluation has been studied by Chaturvedi and Tzeng [12], Vantomme [13], Gibson et al. [2],
Finegan and Gibson [14], and Chandra [15] and is incorporated in damping models. Further, the
effect of damage is modelled by the finite element approach using a 2-D friction element. A
pseudo dynamic approach is proposed to predict total loss factors of composites for different
loadings for a single fiber–matrix debonding [15]. An integrated approach to study the effect of
fiber–matrix, interphase and the dissipation resulting from damage sites at the fiber–matrix
interface on the damping are considered here for fiber-reinforced composites. This has been
achieved using FEM models developed for the two-phase composites and upgrading the same for
the composite with interphase and damage.

2. Composite damping mechanisms

A detailed review of the damping studies in fiber-reinforced composites is given by Chandra
et al. [16]. Different sources of energy dissipation in fiber-reinforced composites are briefly
discussed below.
(1) Viscoelastic nature of matrix and/or fiber materials: the major contribution to composite

damping is due to the matrix. However, fiber damping must be included in the analysis for carbon
and Kevlar fibers, which have higher damping as compared to other types of fibers. Damping
models, which consider the effect of dissipation of energy due to fiber and matrix in fiber-
reinforced composite, are called two-phase models.
(2) Damping due to interphase: interphase [2] is the region adjacent to the fiber surface all along

the fiber length. The interphase possesses a considerable thickness and its properties are different
from those of embedded fiber and bulk matrix. The nature of interphase: weak, ideal or strong
accordingly affects the mechanical properties and in turn damping of the fiber-reinforced
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composites. Changing composite material comprised of fiber–interphase–matrix leads to
modification of its overall damping.
(3) Damping due to damage: it is mainly of two types: (i) frictional damping due to slip in

unbound regions between fiber and matrix interface or delaminations, and (ii) damping due to
dissipation in the area of matrix cracks, broken fibers, etc.
Increase in damping due to fiber–matrix interfacial slip is reported to be significant [3]. Also,

damping is more sensitive than stiffness to damage in a composite [17].
(4) Viscoelastic damping at large amplitudes of vibration or high stress/strain levels exhibits an

evident degree of non-linear damping due to the presence of high stress and strain concentration
in the local regions between fibers [4].
(5) Thermoplastic damping is due to cyclic heat flow from the region of compressive stress to

the region of tensile stress in the composite, especially in thermoplastic composites [18].
Damping studies considering the composite as two-phase or three-phase systems and modelling

of damage at the fiber matrix interface for damping is reported as an integrated approach in this
paper.

3. Analysis for damping

Micromechanical damping analysis of unidirectional fiber-reinforced composites involves the
determination of contribution of its constituents, i.e., fiber, matrix, interphase and condition of
the fiber–matrix interface. In this paper, initially it is presumed that there is perfect bonding
between fiber and matrix, and the composite is considered to be made up of two phases (fiber–
matrix). The concept developed for a two-phase model is extended to three-phase composites
(fiber–interphase–matrix). Further, the effect of the condition of fiber–matrix interface, i.e.,
damage (micro-crack) or discontinuity at the fiber–matrix interface is incorporated in the two-
phase composites.

3.1. Two- and three-phase damping models

The strain energy method proposed by Ungar and Kerwin [19] expresses, for a given loading,
the composite loss factor as the ratio of the summation over all elements of the structure of the
product of the loss factor for each element and the strain energy for each element to the total
strain energy.
Thus the loss factor for the three-phase model considering the effect of fiber, matrix and

interphase can be expressed as

Z ¼
Pn

i¼1 ZiWiPn
i¼1 Wi

; ð1Þ

Zc ¼
ðZf Wf þ ZmWm þ ZiWiÞ

Wc

: ð2Þ
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The strain energy stored in the composite under loading can be written as

Wc ¼ 1
2

Z
V

sijeij dV ¼ 1
2

X
sijeij dV ¼ 1

2

X
sTij SijsijdV : ð3Þ

The total strain energy of composite can also be expressed as the sum of the contributions from its
constituents, i.e., fiber, matrix and interphase respectively,

Wc ¼ ðWf þ Wm þ WiÞ: ð4Þ

The strain energy stored in the constituents, i.e., fiber matrix and interphase in a unit cell of a
certain volume is given as

Wf ¼ 1
2

X
fsijg

T
f fSijgf fsijgf dVf ; ð5Þ

Wm ¼ 1
2

X
fsijg

T
mfSijgmfsijgmdVm; ð6Þ

Wi ¼ 1
2

X
fsijg

T
i fSijgifsijgidVi: ð7Þ

The above relationships can be modified for two-phase composite by ignoring the contribution of
the interphase due to its absence, i.e., Wi=0 and Zi=0. The above formulation is adopted for
FEM modelling of loss factors in composite materials. Some of the important research papers of
Gibson et al. [2] and Finegan and Gibson [14] made use of a FEM/Strain energy approach to
predict damping in fiber-reinforced composites.

3.2. Modelling for interface damage

Damage in glass fiber-reinforced epoxy considered here is represented by a hairline crack with
zero gap width at the fiber–matrix interface. Any discontinuity in the composite is referred as
geometrical non-linearity. This discontinuity at the fiber–matrix interface is modelled by
application of a non-linear gap element. Thus, the FEM modelling of interfacial discontinuity is
considered as non-linear. The gap element facilitates modelling of a discontinuity at the interface
without or with the consideration of friction, respectively. As under dynamic loading, the fiber–
matrix interface is bound to dissipate energy at the debonded region, it is appropriate to use
friction elements to simulate the actual conditions. Further, in order to predict dissipation of
energy per cycle, the non-linear/FEM model is subjected to static loads in steps varying from zero
to maximum and to zero for a half load cycle during which the crack is in a closed condition.
Hence, it is through the analysis of the set of static/non-linear FEM models that energy
dissipation at the fiber–matrix interface is predicted.
A 2-D gap/friction element, which is a two noded non-linear element, provides node-to-node

contact between the two bodies. The friction element is based on the law of friction relating the
tangential (Ft) and normal (Fn) forces through a coefficient of friction (m). In order to predict the
dissipation of energy for one cycle due to sliding at the fiber–matrix interface caused by
discontinuity (damage), the FEM model with an interface friction element is simulated for
dynamic steady state loading. For this purpose, a sinusoidally varying load is applied to the
composite. At various stages of the load the state of the composite is analyzed with respect to the
forces and displacements in the damage region. The force–displacement variation over a complete
cycle of loading is used to calculate the energy dissipated in the gap element. This approach is
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pseudo-dynamic in nature since inertia effects are not considered and the dynamic loading is
assumed as a series of static forces varying in a sinusoidal manner. Thus the force applied, Fi,
varies as given in Eq. (8). A static non-linear FEM analysis is conducted for a number of discrete
values of this force:

Fi ¼ F0 Sin ot ¼ F0 Sin y: ð8Þ

In the process of dynamic simulation, it is necessary to select the direction and magnitude of the
excitation load for the static non-linear analysis. Here, non-linearity is introduced due to the
geometric discontinuity, i.e., debonding at the fiber–matrix interface. The magnitude of amplitude
F0 is decided on the basis of linear elastic behavior of the glass fiber-reinforced composite (GFRE)
for which the damping studies are under consideration. The excitation load for the corresponding
static non-linear FEM models simulating the dynamic behavior under particular loading
condition is increased gradually, starting from zero in a step increment of a certain fixed
percentage of F0.
In the process of performing a sensitivity analysis of the frictional element, it is observed that

the gap remains in closed status for half of the loading cycle, while for the remaining half it attains
an open status [15]. The dissipation of energy due to relative sliding at the fiber–matrix interface
naturally occurs during the closed status of the discontinuity when the gap is in a sliding mode
depending upon the instantaneous direction of the step load. Hence, for each type of loading, i.e.,
transverse, transverse shear, extensional and in-plane shear, it is important to select the direction
of the load vector so that the relative sliding occurs between the nodes of the friction element
belonging to fiber and matrix during a particular step load. The pseudo-dynamic approach is
proposed to predict the contribution of energy dissipation due to sliding at the fiber–matrix
interface. The steady state response of the FEM model is simulated by the application of load
steps lying on a sinusoidal quarter cycle such that 0pFipF0, where Fi is step load and F0 is
amplitude of the steady state load. Dissipation of energy due to the discontinuity at the interface is
obtained by varying the step load from 0 to F0 and then to 0 for half the cycle or for the quarter
cycle with a step load from 0 to F0 and analyzing the respective FEM models.
The output of the static non-linear FEM analysis for each load step provides Ft and the relative

displacement ds between the nodes of the friction element simulating the discontinuity at the
interface. The area under the curve plotted between Ft vs ds gives the dissipation of energy due to
the interface for the quarter cycle. Thus, the energy dissipated per cycle at the interface due to the
discontinuity is given by

D ¼ 2� ð1
2
� Ft � dsÞ: ð9Þ

The total loss factor of the composite can be determined as the ratio of total energy dissipated and
the maximum strain energy per cycle as

Ztotal ¼
ðDf þ DmÞ þ

Pn
j¼1ðDidÞj

Wid

: ð10Þ

Here j=index of friction element, n being their total number, Df and Dm=energy dissipated by
fiber and matrix, respectively, Did=energy dissipation due to individual discontinuity at the
interface, and Wid=total strain energy with interfacial discontinuity.
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The contribution of the fiber–matrix can be expressed in terms of the loss factor and strain
energy without consideration of fiber–matrix interface friction (m=0) as

ðDf þ DmÞ ¼ Zwf Wid ; ð11Þ

where Zwf=loss factor without the consideration of friction at the interface.
Thus, Eq. (10) can be rewritten as

Ztotal ¼ ðZwf Þ þ

Pn
j¼1ðDidÞj
Wid

: ð12Þ

3.3. FEM modelling

FEM models for GFRE with various fiber volume fractions are constructed and subjected to
different types of loading conditions. 2-D, 3-D static and 2-D static non-linear (with gap/friction
element) FEM models are analyzed for the prediction of loss factors (Z11, Z22, Z12 and Z23) for two-
and three-phase models of composites with damage, respectively.

3.3.1. Two- and three-phase FEM modelling

The 2-D single-cell representative volume element (RVE) discretized by plane strain/plane stress
elements is shown in Fig. 1. In addition to the lay out of the fiber and matrix elements, Fig. 1 also
shows the boundary conditions for the respective type of loading for two-phase models. In case of
transverse and transverse shear loading, the nodal points at the lower edge of the RVE are fixed
by restricting all the degrees of freedom. For the longitudinal shear case the half-domain model is
utilized. For the case of the longitudinal loading, constraints along the x-axis allows motion along
the x-axis and restricts all other, whereas along the y-axis it restricts all except along the y-axis.
For longitudinal shear, nodal constraints on the lower edge of the RVE restrict all the degrees of

Fig. 1. FEM models for different loading conditions: (a) transverse, (b) transverse shear, (c) longitudinal, (d)

longitudinal shear.
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freedom. Transverse uniform stress is applied at nodal points along the y-axis (Fig. 1(a)), whereas
transverse shear acts on the face of the elements (Fig. 1(b)). Similarly, the nodal longitudinal stress
is applied at the nodes perpendicular to the face of the respective element (Fig. 1(c)) for the case of
the longitudinal model while longitudinal shear stress acts on the face of the elements (Fig. 1(d)) in
case of longitudinal shear models, respectively. The analysis of the FEM models was performed
for the prediction of the state of stress in the constituents of the composite. The strain energy
stored in the fiber and matrix, and the loss factors for different loading conditions are obtained
based on Eqs. (4)–(7). Strain energy is determined in the present study over the area of each
element assuming a unit constant thickness. These two-phase FEM models have been modified by
introducing an interphase between fiber and the matrix to predict its effect on composite damping.
2-D FEM models with interphase volume fraction Vi=0.02, 0.04, 0.08 and 0.1 for transverse

and transverse shear loading with single-cell square array packing are analyzed. Fig. 2(a) and (b)
show the 2-D FEMmodel for transverse and transverse shear loadings, respectively. These models
are constructed for a fixed fiber volume fraction Vf=0.4 considering the interphase to be (1) hard:
interphase properties are taken as average of the elastic properties of fiber and matrix; or (2) soft:
interphase properties are lower than those of the matrix (see Table 1). This assumption is made
because a precise estimation of the properties of the interphase is not available in the reported
literature [12–13]. Similarly, the loss factor for both the soft and hard interphase is assumed to be
the average of the loss factor of fiber and matrix, because no theoretical or experimental data is
available in literature. Chaturvedi and Tzeng [12] assumed the loss factor of the interphase to be
equal to that of the matrix because of a lack of information in this regard. Loss factors in

Fig. 2. 2-D FEM models with interphase for Vf ¼ 0:4 (fixed), Vi ¼ 0:1; Vm ¼ 0:5; number of elements Nf ¼ 1264;
Ni ¼ 65296; and Nm ¼ 972130: Loading conditions: (a) transverse and (b) transverse shear.

Table 1

Basic properties of GFRE constituents

Properties E-glass fiber Epoxy matrix Hard-interphase Soft-interphase

E (Gpa) 72.4 2.76 37.58 0.5

G (Gpa) 30.2 1.02 15.61 0.178

n 0.2 0.35 0.204 0.4

Z 0.0018 0.015 0.0084 0.0084
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transverse and transverse shear, longitudinal and longitudinal shear modes are also predicted
using 3-D FEM models. 3-D FEM models with an interphase for transverse and transverse shear
loading are shown in Fig. 3. Hexahedra eight noded elements are used to construct the FEM
model for the fiber-reinforced composite with a fiber volume fraction Vf=0.4 [15].
The total thickness of the interphase (Ti) is worked out such that the maximum value of Vi=0.1

is further subdivided into a number of layers to obtain Vi=0.02, 0.04, 0.08. A finer mesh size is
used in the interphase near the fiber as well as near the matrix in order to correctly predict stresses
in interphase region. Both a soft and a hard interphase is incorporated in the FEM models. The
output of the static analysis of these FEM models is obtained in the form of the strain energy for
the finite elements of fiber, matrix and interphase in the respective mode of loading. The strain
energy of the constituent elements is determined using Eqs. (4)–(7) and corresponding loss factors
(Z11, Z22, Z12 and Z23) are predicted.

3.3.2. FEM modelling for damage
The interfacial discontinuity is modelled by single- and multiple-gap elements in case of

transverse and transverse shear loading to study the effect of orientation as well as the effect of the
number of gap elements for the same gap size. The orientation of gap yg is defined as angle
subtended by the direction of the gap at the coincident nodes with respect to the global x-axis. The
gap size ygs is referred as the included angle between the extreme merged nodes corresponding to
beginning and end of the discontinuity. Thus the discontinuity is characterized by parameters: gap
width (GW), gap size (ygs) number of gap elements and gap orientation (yg). In case of the single-
gap element model, the orientation of gap coincides with the axis of symmetry of the gap, whereas
for the multiple gap element model, an average gap orientation is considered which again refers to
the axis of the symmetry of the gap. Single-gap element refers to use of only one friction element
between a debonded fiber and the matrix interface. The three-gap element FEM model
incorporates, for the same gap size, three friction elements.
A representative FEM model for transverse loading with a single-gap element having yg=45o

and ygs=45
o is shown in Fig. 4(a). It consists of 80 quadrilateral four noded elements comprised of

a number of elements in the fiber (Nf) from 1 to 48, and elements in the matrix (Nm) from 49 to 80,

Fig. 3. 3-D FEM model for composite with interphase: Vf ¼ 0:4 (fixed), Vi ¼ 0:1; number of elements Nf ¼ 12270;
Ni ¼ 2712510; and Nm ¼ 5112690: Loading conditions: (a) transverse, and (b) transverse shear.
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Fig. 4. Static/non-linear FEM model for (a) transverse loading with a single-gap element, Ng ¼ 82; and (b) transverse

shear loading with three-gap elements, Ng ¼ 82284: Model: Vf ¼ 0:4; number of elements Nf ¼ 1248:
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in addition to one friction element, Ng=82. The model is analyzed for several load steps Fi which
is increased gradually from 0 to 1N in an increment of 0.1 such that 0pF0pFi. The corresponding
output Ft, ds, Wf and Wm is recorded.
Various static non-linear FEM models, also with a single-gap element for different gap

orientations, yg varying from 0 to 180� in step of 22.5�, are analyzed in combination with a
pseudo dynamic approach to obtain strain energy of the constituent finite element and the energy
dissipated at the interface due to debonding in different loading conditions. Fig. 4(a) also
elaborates how the single-gap element is incorporated in the various FEM models to study the
effect of gap orientation on overall damping. The gap orientation varies from 0 to 180� in a step
of 22.5�, which refers to the direction of discontinuity at the fiber matrix interface. Three-gap
element FEM models for transverse loading are obtained by replacing single-gap elements by
three-gap elements. The purpose of using three-gap elements is to study the effect of the number
of friction (gap) elements on the dissipation of energy at the interface for the same gap size (ygs).
So three friction elements are introduced along the fiber–matrix interface for the same gap size
(ygs=45�) as in case of single-gap element models. The orientation of three friction elements
within the gap can be seen from Fig. 4(b): yg with respect to the global x-axis is 45� (position of
friction element number Ng=82) and yi=711.25� with respect to the gap axis (position of
friction element Ng=84 and 83). Fig. 4(b) shows the static non-linear FEM model with the
application of three-gap elements. Models with three-gap elements for different gap orientations,
yg=0 to 180� in steps of 22.5�, are analyzed for the non-linear static case and are drawn for all
gap elements maintaining closed status for all step loads (0pFipF0). Energy dissipated due to slip
at the interface in transverse loading for single and three-gap element models are predicted [15].
Representative Ft	ds plots (for yg=0–180�) for static/non-linear FEM models with three-gap
elements under transverse loading are given in Fig. 5. Each area under these curves can be
evaluated to obtain the individual contribution of gap elements to the total dissipated energy due
to the gap size ygs=45�.
A pseudo-dynamic approach is used to predict total loss factor of composite for various

orientations of gap element. In this approach, the following procedure is adopted for all the
damping predictions for models with friction elements.

Step 1: determine the loss factor for the composite when m=0 using Eq. (11).
Step 2: plot a graph between Ft and ds for the corresponding incremental loads for 0pF0pFi.

The area under the Ft	ds curve provides the energy dissipated for the quarter cycle of the steady
state load, Ft=F0 Sinot.

Step 3: use Eq. (12) to predict the total loss factor Z22, considering dissipation of energy due to
fiber, matrix and due to sliding at the interface, i.e., friction.
The percentage increase in loss factor due to interface sliding, with respect to a pristine material

loss factor is expressed under transverse loading as

% increase in loss factor Z22 ¼
ðZ22Þt 	 ðZ22Þp

ðZ22Þp
� 100: ð13Þ

In a similar way FEM models with single/three-gap elements for the transverse shear loading
condition and relevant boundary conditions are analyzed in order to predict the total shear loss
factor (Z23)t and the percentage increase in (Z23)t for the respective case.

R. Chandra et al. / Journal of Sound and Vibration 262 (2003) 475–496484



Discontinuity at the fiber–matrix interface, in case of longitudinal and longitudinal shear is
considered to be around the circumference of the fiber. Due to symmetry, a 2-D half-domain
FEM model is used, and the discontinuity is modelled by a single-gap element. The position of
discontinuity is identified along the fiber axis by the location of the gap element, and defined as the
ratio x/l (Fig. 6). Here, x is the location of gap element with respect to the left edge of the model
and l is the length of the model along the fiber axis. Longitudinal or longitudinal shear loading is
applied, while analyzing the corresponding model.
Typical 2-D FEM models with single-gap element for longitudinal and longitudinal shear

loading with a discontinuity starting at the extreme right hand side and showing the loading and
boundary conditions are depicted in Fig. 6. Each model consists of eight noded quadrilateral

Fig. 5. Energy dissipated at the interface due to friction: transverse loading, three-gap element model (gap element 
,
GE-82; ’, GE-83; and n, GE-84) for orientation of gap axis yg (a) 0

�, (b) 22.5�, (c) 45�, (d) 67.5�, (e) 90�, (f) 112.5�,

(g) 135�, (h)157.5�, and (i) 180�.
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elements: 1 to 20 in the fiber and 21-40 in the matrix. Element number 41 is a gap element at the
location x/l=1.
The total loss factor in extension and shear is predicted using Eqs. (11) and (12). In Eq. (12) the

respective loss factors are replaced by ones corresponding to the respective loading condition.

4. Results and discussions

The total loss factor for a composite is due to the contributions of fiber, matrix and energy
dissipated because of sliding at the damaged interface. Results of damping predictions based on
the integrated FEM/Strain energy approach considering the above-mentioned mechanisms are
presented here.

4.1. Two-phase composite

Damping coefficients predicted by FEM/strain energy modelling and from various other
micromechanical models [7, 20–25] for two-phase composites are presented in Table 2 for a fiber
volume fraction of 0.4. Table 2 shows that for the given fiber volume fraction the FEM/strain
energy prediction for Z11 compares well with those of the Saravanos–Chamis approach, and the

Fig. 6. Static/non-linear FEM model with single-gap element for different loadings model; Vf ¼ 0:4; number of

elements in fiber Nf ¼ 1	 20; in matrix Nm ¼ 21	 40 and gap element Ng ¼ 41: (a) Longitudinal loading, (b) shear
loading.

Table 2

Comparison of loss moduli using various models/methods

Model/method Z11 Z22 Z12 Z23

Eshelby 9.867� 10	4 1.40593� 10	2 1.41181� 10	2 1.43321� 10	2

Tsai — 1.42107� 10	2 1.41� 10	2 —

Hashin 2.514� 10	3 1.433� 10	2 1.41� 10	2 —

Halpin–Tsai — 1.358� 10	2 1.4118� 10	2 —

FEM/Strain energy 2.6539� 10	3 1.4495� 10	2 1.4712� 10	2 1.4489� 10	2

Saravanos–Chamis 2.514� 10	3 1.10159� 10	2 1.10159� 10	2 1.0544� 10	2
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Hashin model also indicates that the predictions made by Eshelby’s method are not accurate
enough. Loss factors Z22, Z12 and Z23 predicted by the FEM/strain energy method correlate very
well. A detailed comparative study of damping predictions by the FEM/strain energy method in
reference to other models/methods has been studied by the authors and reported previously [25].

4.2. Three-phase composites

Loss factors Z11, Z22, Z23, and Z12 are evaluated for fixed fiber volume fraction (Vf=0.4) by
changing the interphase volume fraction between the ranges of 0.02–0.1 for a low interphase loss
factor of the order of 0.0084. Fig. 7 shows variation of loss factors Z11, Z22, Z23, and Z12 as function
of interphase volume fraction (for both soft and hard interphase) using the FEM/Strain energy
method. The loss factor Z11 is almost constant in case of a composite with a soft interphase,
whereas there is some increase when the hard interphase is incorporated. Curve 3 indicates that
there is decrease in loss factor Z22 as the interphase volume fraction increases in the composite
with soft interphase. In contrast, the presence of a hard interphase does not have any effect on Z22
with the increase in Vi. Similar behavior is observed for the loss factor of a composite with soft
and hard interphase, respectively. Loss factor Z12 of a three-phase composite is predominantly

Fig. 7. Effect of interphase volume fraction on loss factor 1	Z11 (soft interphase), ; 2–Z11 (hard interphase), ;

3–Z22 (soft interphase), ; 4–Z22 (hard interphase), ; 5–Z12 (soft interphase), ; 6–Z12 (hard interphase), ;

7–Z23 (soft interphase), —
—; 8–Z23 (hard interphase),– -’- –.
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dependent upon the status of the interphase, which is clear from curves 6–7. It is observed that Z12
for a composite with a soft interphase decreases appreciably with increase in Vi as compared to
the case of a hard interphase. A marginal reduction in Z12 with a hard interphase is due to minor
variation in the strain energy component of the interfacial region. It may be noted that the over all
loss factor of composite from the FEM model is dependent on assumed values of interphase
properties, i.e., loss factor and elastic modulus. A gradual decrease in the value of Z23 is predicted
with increasing Vi in case of a composite with a hard interphase (curve 8) whereas there is very
minor change in its value in case of a soft interphase (curve 7). Further details concerning the
percentage contribution of individual constituents, i.e., fiber, matrix and interphase, to the overall
loss factor of the fiber-reinforced composite are given by Chandra et al. [26].

Fig. 8. Variation of loss factor Z11 as a function of Vi (3-D FEM model with soft interphase).

Fig. 9. Variation of loss factor Z22 as a function of Vi (3-D FEM model with soft interphase).
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A parametric study of the interphase is shown in Figs. 8–11. The effect of variation of
interphase loss factor for different interphase volume fraction on the composite loss factor is
shown in Figs. 8–11. It can be seen that the interphase loss factor for higher values (0.1–0.5) has a
predominant effect on the composite loss factor under all loadings, i.e., longitudinal, transverse,
longitudinal shear and transverse shear. Higher values of the Zi loss factors show faster increasing
damping trend with increase in interphase volume fraction. At lower values of interphase damping
Zi, the composite loss factors for all loadings show very little variation.

Fig. 10. Variation of loss factor Z12 as a function of Vi (3-D FEM model with soft interphase).

Fig. 11. Variation of loss factor Z23 as a function of Vi (3-D FEM model with soft interphase).
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4.3. Effect of interface damage

Results pertaining to the total transverse loss factor Z22 obtained from single- and three-gap
element models are discussed first. Energy dissipated at the interface for three-gap element models
can be obtained from Fig. 5 by adding contributions of individual gap elements. In accordance
with the basic principal underlying the interface element [27], here tangential force, Ft varies
linearly with respect to relative sliding between the coincident nodes belonging to fiber and matrix
at the interface in contact. As the gap remains closed for half the cycle, the dissipation of energy is
given by Eq. (9). Similar behavior is observed for single-gap element models. Variation of (Z22)t
and the percentage increase in (Z22)t with respect to yg for a single-gap FEM model is shown in
Fig. 12(a) and (b), respectively. Fig. 12(a) shows that an appreciable increase in damping takes
place as the orientation of the gap (and the angle with respect to the direction of load vector)
changes from 0 to 45�. The reason is that the relative sliding distance (ds) increases with an
increase in yg, although there is a decrease in Ft. For the gap orientation yg=0�, Di=0, and
therefore (Z22)t reduces to (Z22)wf. Moreover, Ft=0, and for such a situation, the normal force Fn is
very high, leading to a close status of the gap with a sticking mode. As yg equals 22.5

�, the angle

Fig. 12. Effect of number of gap elements on: (a) total Z22, (b) percentage increase in total Z22 (FEM model: gap size

ygs=45�; Vf=0.4; 
, single-gap element; ’, three-gap element).

Table 3

Variation of ds and Ft with gap orientation yg

Gap orientation yg Sliding distance ds (mm ) Ft� 10	2 (N)

0 0 0

22.5 0.64716 1.064379

45 8.8003 0.9783104

67.5 8.3086 0.7336094

90 4.0153 0.298794

112.5 2.8348 0.2666007

135 6.0597 0.865095

157.5 4.1404 1.636684

180 0 0
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between the average load vector and the gap direction becomes 22.5�. Table 3 shows the sliding
distance (ds) and Ft, for different values of yg, which have a direct bearing on the value of Di. It
can be seen that although Ft decreases marginally with yg, the magnitude of ds increases, leading
to larger dissipation of energy at the interface. This is true up to yg=45�. Further, for
45�pygp90�, there is a continuous decrease in Ft and ds. The following ratio gives a quantitative
idea; for example, (Ft)y=67.5�/(Ft)y=45�=0.75 and (Ft)y=90�/(Ft)y=45�=0.30, whereas (ds)y=67.5�/
(ds)y=45�=0.94 and (ds)y=90�/(ds)y=45�=0.46. Thus, under the combined effects of Ft and (ds),
(Z22)t decreases for 45�pygp90�.
There is a slight increase in (Z22)t for yg=112.5�. Thereafter, similar behavior for (Z22)t is

repeated for 112.5�pygp180� with a maximum at yg=157.5�. Once again at yg=180�, direction
of load vector and gap direction coincide, leading to Di=0 and thus reducing to (Z22)t=(Z22)wf.
The variation of Di vs yg for single-gap element models is shown in Fig. 13(a). A sharp increase in
the value of Di is clearly seen for yg in the region of about 45

� and 157.5�, which explains the fact
that (Z22)t attains the peak values at these angles. Fig. 12(b) shows the percentage increase in (Z22)t
as a function of yg. Its pattern of variation is exactly similar to (Z22)t. It has an increasing trend for
0�pygp45�, followed by a reducing trend for 45�pygp67.5�. An increasing trend is again
observed for 112.5�pygp157.5�. Similar behavior is observed for 180�pygp360� (the results are
not presented here) due to the geometric symmetry of the model.
Figs. 12(a) and (b) also show (Z22)t and the percentage increase in (Z22)t for models with three-

gap elements with respect to yg. The behavior of (Z22)t and % increase in (Z22)t is similar to the one
for models with a single-gap element. This is also clear from the comparison of energy dissipated
per cycle for the two types of models in transverse loading as shown in Fig. 13(a). The reason for
higher Di, say for yg=0�, is due to the contribution of gap elements having a gap orientation
yg=711.25� with respect to the gap axis. Similarly, Figs. 12(a) and (b) show that the peak value
of (Z22)t and the percentage increase in (Z22)t correspond to yg=45� and 157.5� as in case of single-
gap element models. However, their magnitudes are on the higher side. The percentage increase in
(Z22)t for a single-gap element is 23.75 whereas for the three-gap element model, it is 27.8 at
yg=45�. Corresponding to the other peak, i.e., at yg=157.5�, the value of the percentage increase
in (Z22)t is 18.85 and 25.08, respectively, for the single-gap element and three-gap element models.

Fig. 13. Variation of energy dissipated by gap under (a) transverse, (b) transverse shear loading (FEM model: gap size

ygs=45�; Vf=0.4; ––
––, single-gap element; ––’––, three-gap element).
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The comparison of the results shows a marginal difference in value of percentage increase in (Z22)t
for yg=45�(B4%) and yg=157.5�(B6%). This shows consistency of results obtained, indicating
that the number of gap elements to model discontinuity does affect the loss factor values only
marginally. An optimum selection of the number of gap elements for the same gap size gives better
results. The direction of the load with respect to orientation of the gap axis has a greater effect on
(Z22)t and on the percentage increase in (Z22)t. If the orientation of the gap axis coincides with the
load vector, there is no effect of slip at the interface on (Z22)t, and (Z22)t=(Z22)wf.
Variation of energy dissipation in transverse shear loading from single- and three-gap element

models corresponding to the orientation of the gap axis is plotted in Fig. 13(b). Here also it can be
seen that variation of Di for both single- and three-gap element models are closely related. It may
be noted that the use of three-gap elements is primarily to test its adequacy over the single-gap
element. Figs. 14(a) and (b) show the variation of (Z23)t and the percentage increase in (Z23)t as a
function of yg, respectively. Thus, a close relationship is observed for (Z23)t in both the models
with a maximum at yg=135�. The total loss factor is somewhat higher in case of the three-gap

Fig. 14. Effect of number of gap elements on: (a) total Z23, (b) percentage increase in total Z22 (FEM model: gap size

ygs=45�; Vf=0.4; 
, single-gap element; ’, three-gap element).

Fig. 15. Effect of location of gap on (a) total Z12 and (b) percentage increase in total Z12 (FEM model: inplane shear

loading; no. of gap elements=1; gap size=23.76 mm; Vf=0.4).
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element model as compared to the single-gap element model. The percentage increase in (Z23)t at
yg=135� is 34.84 (single-gap model) and 40.8 (three-gap element) for the two type of models.
Figs. 15(a) and (b) show the effect of location of the gap along the axis at the interface on (Z12)t

and the percentage increase in (Z12)t. It can be seen that (Z12)t is almost independent of the relative
position of the gap element (x/l) along the fiber length so far as the discontinuity is within the
structure (0ox/lo1). However, for the discontinuity starting at the edge, i.e., x/l=1, the value of
(Z12)t increases slightly to 1.6� 10	2. Similarly, the percentage increase in (Z12)t for the
discontinuity of the same size within the composite, is constant and independent of the relative
position of the gap element up to 0.075px/lp0.925. However, for a discontinuity at the edge, i.e.,
x/l=1, there is a sudden rise in the percentage increase in (Z12)t, of the order of 6.25. This indicates
that the effect of debonding or discontinuity at the interface on (Z12)t is more predominant at the
edges. When the damage is away from the edges along the fiber matrix, (Z12)t D Z12 of the pristine
material.
Figs. 16(a) and (b) show variation of (Z11)t and percentage increase in (Z11)t with the relative

position of the gap along the fiber–matrix interface. It can be observed that there is an increase in
(Z11)t in reference to pristine material due to slip at the fiber–matrix interface for the same gap size.
However, it is independent of x/l for 0ox/lo1, when the debonding is within the composite. The
total loss factor (Z11)t increases sharply to 5.088� 10	3 for debonding starting from the edge.
Similarly, the percentage increase in (Z11)t is fairly constant (B9.4%) for 0.075px/lp0.925,
whereas at the edge (x/l), it jumps to 56%. Thus, the sensitivity of longitudinal loading on (Z11)
and the percentage increase in (Z11) is indicated through these results.

5. Conclusions

An integrated FEM/Strain energy approach has been worked out to predict loss factors (Z11,
Z22, Z23, and Z12) for two-phase, three-phase composites with damage (interfacial discontinuity).
The following conclusions have been made.

Fig. 16. Effect of location of gap on (a) total Z11 and (b) percentage increase in total Z11 (FEM model: longitudinal

loading; no. of gap elements=1; gap size=23.76 mm; Vf=0.4).
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5.1. Two-phase composites

Comparison of damping predictions for two-phase (fiber–matrix) composites are made
based on several models and has shown that the finite element/strain energy model based
damping results presented here are best for a single representative volume element. Thus,
the loss factors are higher for all loading conditions due to the reason that only the actual
state of stress is accounted for. There is better correlation of the loss factor predictions
made by Eshelby’s method, and the Hashin’s model, and the Halpin–Tsai and Tsai
model. The only exception is the case of the longitudinal loss factor (Z11), where deviation
is observed in the prediction based on Eshelby’s method. The other methods give better
results.
Loss factors predicted through the unified micromechanics approach do not compare well with

other methods. Consideration of variable stress (in the FEM method) and the additional effect of
fiber-to-fiber interaction (in Eshelby’s method) render results from these theories rather more
accurate.

5.2. Three-phase composites

Damping coefficients for fiber-reinforced composites with hard and soft interphases in
longitudinal, transverse, longitudinal and transverse shear loading conditions predicted using
the FEM/Strain energy approach employing both the 2D and 3D FEM models provide the
understanding as to how damping is related to the modulus and the volume fraction of the
interphase. The results provide an insight into the interplay and relative contributions of the three
constituents, i.e., the fiber, matrix and interphase, to various damping loss factors. The change in
properties of fiber, matrix and interphase will lead to a change in the magnitude of effectiveness of
the interphase, but the manner in which the interphase would affect the various loss factors
depends predominately upon whether the hard or soft interphase is chosen. Loss factor of fiber-
reinforced composites can be improved to a great extent by incorporating highly damped
interphases.

5.3. Effect of interface damage

The damage in composite is modelled as a discontinuity at the fiber–matrix interface
(debonding) by a 2-D gap element using the finite element method to predict transverse,
transverse shear, longitudinal and longitudinal shear loss factors. It is observed that the damping
is sensitive to damage and its orientation with respect to the loading directions. The transverse
loss factor is maximum when the orientation of discontinuity (angle of orientation of gap) is 45o

or 157.5o whereas the transverse shear loss factor has a maximum value for 135o gap orientation.
Both longitudinal and shear loss moduli are independent of the location of the discontinuity along
the axis of a fiber as far as it is within the composite. The percentage increase in damping is
appreciable if the discontinuity is at the edge (approximately 50% for longitudinal load and 6%
for longitudinal shear).
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Appendix A. Nomenclature

Z11, Z22, Z12
and Z23

loss factors in longitudinal, transverse, longitudinal and transverse shear, resp.

Zc loss factor of composite
Zwf loss factor without the consideration of friction at the interface
Ztotal total loss factor of the composite
Wf, Wi, Wm

and Wc

strain energy in fiber, interphase, matrix and composite, resp.

Wid total strain energy with interfacial discontinuity
s, e stress and strain
Ft and Fn tangential normal forces, resp.
m coefficient of friction
Fi applied force
F0 force amplitude of applied force
ds relative displacement between the nodes of the friction element
D energy dissipated at the fiber–matrix interface
Did energy dissipation due to individual discontinuity at interface
Ti total thickness of the interphase
Vf, Vi and Vm volume fraction of fiber, interphase and matrix, resp.
GW gap width
ygs gap size
yg gap orientation
Nf and Nm number of fiber elements in fiber and matrix, resp.
Ng friction or gap element number
x location of gap element along the fiber axis
l length of the model along the fiber axis
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